Na początek forma łańcuchowa w projekcji Fischera:
oraz kod LaTeX-a:
\definesubmol{x}{(-[4]H)(-[0]OH)}
\definesubmol{y}{(-[4]HO)(-[0]H)}
\chemfig{[2]CH_2OH-!x-!x-!y-!x-(=[1]O)-[3]H}
Następnie formy cykliczne w projekcji Hawortha:
α-D-glukopiranoza
\setcrambond{2pt}{}{}
\chemfig{HO-[2,0.5,2]?<[7,0.7](-[2,0.5]OH)-[,,,,line width=2pt](-[6,0.5]OH)>[1,0.7](-[6,0.5]OH)-[3,0.7]O-[4]?(-[2,0.5]CH_2OH)}
β-D-glukopiranoza
\setcrambond{2pt}{}{}
\chemfig{HO-[2,0.5,2]?<[7,0.7](-[2,0.5]OH)-[,,,,line width=2pt](-[6,0.5]OH)>[1,0.7](-[2,0.5]OH)-[3,0.7]O-[4]?(-[2,0.5]CH_2OH)}
oraz mniej znane formy cykliczne:
α-D-glukofuranoza
\setcrambond{2pt}{}{}
\chemfig{?<[:-60,0.7](-[2,0.5]OH)-[,,,,line width=2pt](-[6,0.5]OH)>[:60,0.7](-[6,0.5]OH)-[:150]O-[:210,0.97]?(-[2,0.7](<:[1,0.7]CH_2OH)-[3,0.5]HO)}
β-D-glukofuranoza
\setcrambond{2pt}{}{}
\chemfig{?<[:-60,0.7](-[2,0.5]OH)-[,,,,line width=2pt](-[6,0.5]OH)>[:60,0.7](-[2,0.5]OH)-[:150]O-[:210,0.97]?(-[2,0.7](<:[1,0.7]CH_2OH)-[3,0.5]HO)}
I na końcu przedstawienie form cyklicznych w formie "krzesełkowej":
α-D-glukopiranoza
\chemfig{?(-[:190]HO)-[:-50](-[:170]HO)-[:10](-[:-55,0.7]OH)-[:-10](-[6,0.7]OH)-[:130]O-[:190]?(-[:150,0.7]-[2,0.7]OH)}
β-D-glukopiranoza
\chemfig{?(-[:190]HO)-[:-50](-[:170]HO)-[:10](-[:-55,0.7]OH)-[:-10](-[:10]OH)-[:130]O-[:190]?(-[:150,0.7]-[2,0.7]OH)}